
RnD report
Abstract Interpretation and Abstract Domains

Guide: Prof. Supratik Chakraborty

Eashan Gupta - 160050045

May 2019

1 Introduction

The aim of this project was to learn about various abstract domains used for ab-
stract interpretation and to implement them to be integrated with the CAnalyzer
tool. Some basic introduction and implementation summary regarding the abstract
domains implemented is recorded in this report.

1.1 Background

Abstract interpretation is used to observe important properties of a program. Differ-
ent domains can be used to observe different such properties. These domains store
the state of a program as we parse the program and we can summarize the program
execution by managing the domain.

For implementation, for each domain we require to store an abstractvalue and a
stackvalue. The abstractvalue stores the overall state of the program till now and
stackvalue is a value stored in between operations to facilitate computation. It may
be seen as an output of an operation on a single variable.

2 Congruence Domain

The congruence domain is a non-relational domain. This domain stores the properties
of all the variables independently and follows the property that “variable x always
satisfies n modulo m”. So we store n and m for all the variables and are able to make
comments depending on these.

2.1 Implementation Summary

Structures used:

1

1. stackvalue : std::tuple<int,int,int>

2. abstractvalue : std::map<std::string,std::tuple<int,int,int>>

The structure used stores three values b, c and a for each variable x. The utility
for this was the earlier aim of implementing the domain which was to maintain:

x mod a ∈ [b, c]

0 < b < a, b ∈ Z

0 < c < a, c ∈ Z

But due to difficulty of expressing in this form it was reduced to two values such that
c and b are the same in the implementation.

x = aZ + b

2.2 Post Operations

The various post operations done follow from [2]. The approximations are done as
follows:

• varx = intnum
In this case, a = 0 and b = num where num is an integer.

• varx = d± d′

If
d = aZ + b and d′ = a′Z + b′

So,
x = gcd(a, a′)Z±min(b, b′)

• varx = d× d′

x = gcd(aa′, ab′, a′b)Z + bb′

• varx = d/d′

Best approximation in general is

x = Z

2

2.3 Lattice Operations

The lattice operations also follow from [2].

• d t d′

ares = gcd(a, a′, ‖b− b′‖)
bres = min(b, b′)

• d u d′

If b ≡ b′ mod gcd(a, a′)
ares = lcm(a, a′)

bres = b

else it is ⊥

All these are followed from [2] and implemented accordingly. The values are stored
for a and b in the tuple and retrieved from the map whenever required. For each
operation done in the program, the values are updated or stored according to the
operation rules described above.

2.4 Concerns

• The implemenetation uses a 3-tuple and this can be used if required to change
to original implementation aim which required a, b and c.

• The widen operator maybe changed as currently join and widen do the same
thing. This is because join already over-approximates the values.

3 Array Domain

The array domain is required to simulate arrays efficiently. Ideally, we could refer to
an array by representing it with n number of separate variables, n being the size of
the array. But [3] models it more efficiently by segmenting an array based on index
and then representing the values stored in another separate abstract domain. This
helps in efficient computation, in case we have large arrays and the changes done are
linear on index, as we have fewer variables (segments) to keep track of.

This is a relational domain as the variables and arrays may be interrelated.

3.1 Implementation Summary

The Arrays are represented using separate structures. Each segment’s values are
stored in a separate abstract domain, interval domain in this implementation. The
segment bounds are stored in the form of expressions which are easy to use and the
structure directly used from the Z3 API [1]. The interval domain is directly used form
the previous implementation which uses apron API. The structures are as follows:

3

1. stackvalue : for interval domain from API

2. abstractvalue : for interval domain from API

3. Array

struct Array{
std : : vector<std : : set<expre s s i on>> e x p r e s s i o n s v ;
std : : vector<std : : s t r i ng> va l v ;

} ;

Each array is represented by a vector of segment bounds, each represented by a
set of expressions. Each segment is represented by a hidden variable whose name
is store in the vector val v and can be retrieved from the interval domain. An
array is represented as A : B0P0B1P1 . . . Pn−1Bn where Bi is the ith boundary
set of expressions and Pj is the jth value predicate for the array A. eg:

A : {0}>{i}⊥{n}

B : {0, k} [0, 3] {(i− 1), (j + 2)}>{n}

4. stackvalue for aray domain:

struct StackVal p{
exp r e s s i on ∗e ;
s t a c k v a l u e i n t e r v a l d o m a i n ∗ s ;

} ;

For the implementation, since we do not have the exact expressions directly from
the parser, we rebuild them according to the operations required and these are
stored in e in the stackvalue.

5. abstractvalue for array domain:

struct Abstract {
std : : set<std : : s t r i ng> l i s t o f v a r i a b l e s ;
s td : : map<std : : s t r i ng , Array∗> l i s t o f a r r a y s ;
a b s t r a c t v a l u e i n t e r v a l d o m a i n ∗ i n t e r ;

} ;

The abstract value stores all the variables in the list of variables and their
values are stored in the abstract value interval domain inter. The arrays
are stored in the map with keys as the name of array.

4

3.2 Basic Idea

The basic idea behind the implementation is that an array is divided into segments.
The segment boundaries are stored in the form of expressions in terms of variables
as assigned during runtime. The information regarding the variables used in these
expressions is also stored. Any operation on these variables affects all the expres-
sions. Any operation on the array requires context-free comparison of expressions.
The context-free comparison of expression implies comparing without following the
context. eg:
For abstract domain A1:

e1 = i + 1, i ∈ [1, 3]

For abstract domain A2:
e2 = i− 1, i ∈ [6, 7]

Now compare e1 and e2. If we follow a comparison with context, we have e1 < e2
but if we compare without context, as

i + 1 > i− 1

So e1 > e2 follows. This is useful in the cases where say i is a segment boundary
and we wish to access array element at position i− 1 later, so we require context-free
comparison.

For a detailed example on the unreeling of expressions, refer to Section 4.3 of [3].

3.3 Post Operations

1. Create new array:
Create a new array A[10]. So it is initialised as:

A : {0}>{10}

2. Assigning values to array elements:

A[b] = x

A : B0P0B1P1 . . . Pn−1Bn

Iterate over all expressions in Bi over all i to check where does the expression b
fit and add a new segment between {b} and {(b + 1)} and assign this segment
the value form x→ s (note: form structure of stackvalue p). eg:

A : {0}>{i}⊥{n}

A[i− 2] = 4

So
A : {0}>{(i− 2)} [4, 4] {(i− 1)}>{i}⊥{n}

and similar examples. There are some particular cases such as b or (b + 1)
coincides with bounds which can be taken care of.

5

3. Get value of array element:
Get value of A[b]. So iterate over all expressions in Bi over all i to check in
which segment b lies and take the predicate value from there.

4. Assigning values to variables:

x = f(y0, y1 . . . yn)

Take inverse of the function w.r.t. yi for all i,ie

yi = f−1(x, y0, y1 . . . yi−1, yi+1 . . . yn)

and replace it in all the expressions which contain yi and add these new expres-
sions to corresponding bounds. Then ignore previous expressions of x as it has
a new value and those expressions are now useless. eg:

A : {0}>{i}⊥{n}

B : {0, k} [0, 3] {(i− 1), (j + 2)}>{n}
now,

j = i + 33

Take inverse so that
i = j − 33

replace and ignore previous expressions of j

A : {0}>{i, (j − 33)}⊥{n}

B : {0, k} [0, 3] {(i− 1), ((j − 33)− 1)}>{n}

3.4 Lattice Operations:

3.4.1 Segmentation Unification Algorithm

To join/meet/widen two instances of an array, this algorithm is used. Its purpose
is to segment the whole array based on the two instances such that the segments
are made as small as possible. Then we do the join/meet/widen operation on these
segments respectively.

Abstractdomain1 : A : B0P0B1P1 . . . Pn−1Bn

Abstractdomain2 : A : B′0P
′
0B
′
1P
′
1 . . . P

′
n′−1B

′
n′

So now we tend to create a new segmentation such that it follows from the above
two. For the detailed algorithm, refer to Section 11.4 of [3].

The main idea behind the algorithm is to follow recursively ignoring the predicates,
we only compare the bounds.

6

1. If Bi < B′j, then we place a bound Bi for new array A and move on to comparing
Bi+1 and B′j, and vice-versa.

2. if Bi ∩ B′j 6= ∅ then put a bound with Bi ∩ B′j as the new bound. Rest of the
expressions are compared next to get the order. Note that the predicate value
between this intersection for both the arrays depends on the lattice operation(for
join/widen: (⊥), meet: (>)).

3. If Bi and Bj cannot be compared, we ignore both of them, and club the segments
from the previous to the next ie Bi−1Pi−1 t PiBi+1 and B′j−1P

′
j−1 t P ′jB

′
j+1.

So this algorithm gives a segmented array. We can get values of all the segments of
the two arrays and unify them based on the operation. eg:

0 . . . 10 . . . 20

0 . . . 5 . . . 15 . . . 20

Unifying:
0 . . . 5 . . . 10 . . . 15 . . . 20

Next we get values of all segments from the two domains and correspondingly unify
them. Another example:

{0, i}>{n} and {0, (i− 1)}0{1, i}>{n}

join in steps:

{0}⊥{i}>{n} and {0}0{(i− 1)}0{1, i}>{n} so bound {0}

{i}>{n} and {(i− 1)}0{1, i}>{n} so bound {(i− 1)}

{i}>{n} and {1, i}>{n} so bound {i}

{n} and {n}

So
{0}⊥{i− 1}⊥{i}>{n} and {0}0{(i− 1)}0{i}>{n}

We can also merge the segments which have same values. So removing unnecessary
bounds

{0}⊥{i}>{n} and {0}0{i}>{n}

Meet on corresponding bounds.

So, for calculating the operations join, meet and widen, segmentation unification
has bee implemented which gives the two arrays with corresponding segments. Then
taking unification gives the result. Also for rest of the variables, normal operations
work and have been implemented so.

7

3.5 Concerns and Key Points regarding Implementation

1. The abstract domain used for segments in this case is interval domain. If re-
quired, the abstract domain can be separated as a template by generalizing all
functions required for abstractvalue and stackvalue. Then the code can be
used to simulate array domains with any underlying domain.

2. This implementation does not handle cases in which a variable value is obtained
depending on an array element value and later that variable is used to bound
the array. Such cases may give unexpected results. eg:

i=A[3] + 1 ;
A[i]=5;

3. Merging of segments has not been implemented. It could be implemented to
reduce the number of segments in case they increase drastically. For merging,
first collapse the consecutive bounds whose segment values are same. Then
while collapsing others, join the segment values of the previous two segments
to get the segment value of the new segment. ie:

Bi−1Pi−1BiPiBi+1

Collapse Bi to get
Bi−1Pi−1 t PiBi+1

4. This implementation does not take care of floating point numbers.

5. The paper [3] also refers to cases where we can further subdivide every seg-
ment over indices (eg. odd or even). This can also be added to the current
implementation.

6. Some general helper functions have been defined in the class to facilitate the
coding such as:

• test: It takes as input two expressions and in case both are expressions of
variables, it compares them without context or if there is a numeral, then
it takes into account the context as well.

• contains: To check if an expression is contained in another.

• check equal: To compare equality of two expressions.

• sequential join: It takes two arrays and returns the two arrays after
proper segmentation so that they can be then reduced after joining (or
meet/widen).

8

References

[1] Z3 theorem prover:
https://github.com/Z3Prover/z3.

[2] S. Bygde. Abstract Interpretation and Abstract Domains with special attention to
the congruence domain. Master’s thesis, Department of Computer Science and
Electronics, Mälardalen University, Väster̊as, Sweden, 2006.

[3] R. C. . F. L. . P. Cousot. A parametric segmentation functor for fully automatic
and scalable array content analysis. 2011.

9

